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Current and vortex statistics in microwave billiards

Michael Barth* and Hans-Ju¨rgen Sto¨ckmann†
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Using the one-to-one correspondence between the Poynting vector in a microwave billiard and the prob-
ability current density in the corresponding quantum system, probability densities and currents were studied in
a microwave billiard with a ferrite insert as well as in an open billiard. Distribution functions were obtained for
probability densities, currents, and vorticities. In addition, the vortex pair correlation function could be ex-
tracted. For all studied quantities a complete agreement with the predictions from the approach using a random
superposition of plane waves was obtained.
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I. INTRODUCTION

A particularly successful approach to describe the stat
cal properties of the eigenfunctions of chaotic billiards, d
ing back to Berry@1#, assumes that at any point not too clo
to the boundary the wave function can be described b
random superposition of plane waves,

c~r !5(
n

aneıknr , ~1!

where the modulusk5uknu of the incoming waves is fixed
but directionskn /k and amplitudesan are considered as ran
dom. In billiards with time-reversal symmetry there is,
addition, the restriction that the wave function has to be r
This ansatz cannot be strictly true. It completely ignores
boundary conditions at the billiard walls, but this is of n
importance as long as the wavelength is small compare
the billiard size.

As a consequence, one expects a Gaussian distributio
the wave function amplitudesc, or, equivalently, a Porter
Thomas distribution for their squaresucu2. For the spatial
autocorrelation functionc(r )5^c* ( r̄ 1r )c( r̄ )& r̄ a Bessel
function is found. These predictions were first verified
McDonald and Kaufman in their disseminating papers
stadium wave functions@2,3#. It is impossible to mention al
works that have been published hitherto on this subject.
another consequence of ansatz~1! the gradient of the wave
function is Gaussian distributed too, and uncorrelated to
wave function. This has been used to calculate the distr
tion of eigenvalue velocities and the velocity autocorrelat
function for the case of a local parameter variation@4#.

The approach is not restricted to quantum-mechan
systems, or systems where there is a one-to-one corres
dence to quantum mechanics such as quasi-two-dimens
microwave billiards. Porter-Thomas distributions are fou
as well in the squared amplitudes of vibrating plates@5#. In
an experiment on a three-dimensional Sinai microwave
liard, having no quantum mechanical equivalent, the elec
magnetic field distributions as well as their spatial corre
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tions could be explained assuming a random superpositio
plane electromagnetic fields@6,7#. In a very recent experi-
ment on light propagation through distorted waveguides,
nally, the observed transversal field patterns could be
scribed again by ansatz~1! @8#. All these examples show tha
the approach using a random superposition of plane wave
not of a quantum-mechanical origin, but holds for all typ
of waves.

If the billiard is opened, or if time-reversal symmetry
broken, the wave function acquires an imaginary part,

c5cR1ı c I ,

with the consequence that in dependence of the relative f
tions of real and imaginary parts the distribution ofucu2
changes from Porter-Thomas behavior to single exponen
behavior. An explicit formula describing the distribution
the transition regime has been given by different auth
@9–12#. The same function has been derived by Sˇebaet al.
for the distribution of scattering matrix elements in a pa
tially opened microwave billiard@13#. Wu et al. studied am-
plitude distributions and spatial autocorrelation functions i
microwave billiard with one ferrite-coated wall to brea
time-reversal symmetry, and found quantitative agreem
with the results expected from the approach using a rand
superposition of plane waves@14#. In a recent paper by Ishio
et al., deviations of this formula due to scars and in regu
systems are also studied@15#.

More recently the interest focused on the current statis
in open systems. Saichevet al. calculated the distribution o
currents@12#. The properties of current vortices have be
studied by Berry and Dennis, who gave analytic expressi
for different types of vortex spatial autocorrelation functio
@16#. Independently, such autocorrelation functions as wel
the distribution of nearest distances between nodal po
have been studied in Ref.@17#.

Experimental results on current statistics and the distri
tion of nodal points have not been available as yet. T
method of choice to study such questions are microw
techniques. In a previous work of our group we could de
onstrate that currents can be easily obtained in an open
crowave billiard@18#. In the present paper we show resu
on current distributions in two types of billiards, verifying
©2002 The American Physical Society08-1
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FIG. 1. Map ofucu2 ~top! and of the current~bottom! in the ferrite billiard at 5.19 GHz~a! and 6.41 GHz~b!, and for the open billiard
at 5.77 GHz~c!. The intensity has been converted into a gray scale with the intensity increasing from white to black. The length
arrows in the current map correspond to the magnitude of the Poynting vector. For the field distribution in panel~a! there is a strong flow
into the probing antenna at points of high intensity. In the two other examples the flow into the probing antenna is negligible.
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number of predictions given in the above mentioned pap
also in experiment.

II. EXPERIMENT

The basic principles of the experiment are described
detail in Ref.@19#. Therefore, we concentrate on the aspe
being of relevance to the present study. Two different b
liards have been used, both resonators have a size of a
25 cm and a height of 8 mm. One of them is an open sys
of a rectangular shape with rounded corners and two op
ings on opposite sides containing entrance and exit ante
@see Fig. 1~c!#. A third movable antenna was used to map t
field distribution in the resonator on a square grid of perio
mm. The same system was used previously for a quan
dot analog study@20#. The two fixed antennas have a meta
lic core of diameter 1 mm, and a teflon coating for strong
coupling; the movable antenna was a thin wire of diame
0.2 mm. The lengths of all antennas were about 6 mm.
quantity directly accessible in the experiment is the scat
ing matrix @21#. From a reflection measurement as a funct
of the antenna position a mapping of the modulus of
wave function can be obtained; to get the sign as well,
transmission between two antennas is needed. By the p
ence of the antennas the resonances are somewhat broa
and shifted, but in chaotic systems this does not change
universal distributions.~For details see Ref.@19#.!

The second system studied is a Robnik, or limac¸on bil-
liard @22,23#. It can be obtained by a complex mapping of t
unit circle in the complex plain by means of the functionw
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5z1lz2. The deformation parameter used in the experim
wasl50.4. For this parameter the billiard is believed to
completely chaotic.~There are recent theoretical results ind
cating that this cannot be taken for sure@24#. But if there are
still stable islands in the phase space, their correspond
volume will be very small.! A ferrite ring is introduced to
break time-reversal symmetry@shape and position are in
cluded in Figs. 1~a! and 1~b!#. Ferrites have been used a
ready repeatedly for this purpose@14,25–27#. A detailed de-
scription of the function principle of the ferrites will be give
in a forthcoming publication@28#. During reflection at the
ferrite the microwaves experience a phase shift with the c
sequence that there will be currents through the billia
though it is completely closed. These currents are a comp
analogue to the persistent currents observed in mesosc
structures@29#, for a recent review see Ref.@30#. They will
be the subject of a separate publication@31#. In addition there
will be currents due to the fact that the ferrite introduc
considerable absorption into the system. In the present c
text it is not of relevance whether the currents are due t
break of time-reversal symmetry or due to absorption.

It was demonstrated in Ref.@18# that in quasi-two-
dimensional billiards the Poynting vectorSW 5(c/4p)EW 3HW
can be written as

SW 5
c

8pk
Im@E* ~r !¹W E~r !#,

showing that there is a one-to-one correspondence with
current density,
8-2



CURRENT AND VORTEX STATISTICS IN MICROWAVE . . . PHYSICAL REVIEW E 65 066208
FIG. 2. Distributions ofr5ucu2 for the ferrite billiard at 5.19 GHz~a!, 6.41 GHz ~b!, and for the open billiard at 5.77 GHz~c!,
corresponding to Fig. 1. The dashed lines have been calculated from Eq.~2!.
e
th
b

io
in
u
u
n
t

eg

n
ng

b
b

er

e
he

th

ve
an

ea-
ase,
reg-

be-
-
., in

e is

s
is
d,
are

y

jW5
\

m
Im@c* ~r !¹W c~r !#,

in the corresponding quantum-mechanical system. A m
surement of the electric field in the resonator including
phase thus immediately yields the Poynting vector and
means of the mentioned analogy the current density.

There is one problem with the experimental determinat
of field and current distributions. The probe antenna mov
through the billiard unavoidably gives rise to a leakage c
rent spoiling the statistical properties of the current distrib
tion @18#. The influence of the probe antenna is small as lo
as there is a strong flow through the system. In this case
unavoidable leakage current into the probe antenna is n
gible. There are situations, however, where there is no
only little flow, e.g., for the open dot, if the total transmissio
is close to zero, or for the ferrite billiard, if there are stro
standing waves present, as in Fig. 1~a!. In such cases the
leakage current is no longer negligible, and may even
come dominating. There is only one way to avoid this pro
lem: the frequencies have to be chosen such that the ov
amplitudes are moderate. As an example, Fig. 1~a! shows a
mapping ofucu2 and of the current distribution in the ferrit
billiard at a frequency where there is a strong flow into t
measuring antenna at points of high intensity. In Fig. 1~b!, on
the other hand, the frequency has been chosen such that
is no noticeable current into the probe antenna.

III. INTENSITY DISTRIBUTIONS

In a chaotic billiard, real and imaginary parts of the wa
function are uncorrelated within the approach using a r
06620
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dom super position of plane waves,^cRc I&50, where the
average is taken over the billiard area. In a microwave m
surement, there may be an additional rotation of the ph
caused by antennas, cables etc., i.e., the wave function
istered by the apparatus is

c̃5c̃R1ı c̃ I5eıa~cR1ı c I !.

This has the consequence that real and imaginary parts
come correlated,̂c̃Rc̃ I&Þ0. To begin with we have to re
move this phase rotation. The procedure is described, e.g
Refs.@12,15#.

The distribution of intensitiesr5ucu2 can be calculated
with the help of the Berry ansatz described above. If ther
a complex mixing of independent Gaussian fieldscR andc I ,
we have in the transition regime@12,15#

P~r!5m exp~2m2r!I 0~mAm221r!, ~2!

where

m5
1

2 S e1
1

e D and e5A^c I
2&

^cR
2&

.

In the limit e→0, Eq. ~2! describes the Porter-Thoma
distribution found for systems where the wave function
real. Fore→1, a single exponential behavior is observe
which holds for systems where real and imaginary parts
of the same strength.

Figures 2~a! and 2~b! show the corresponding intensit
8-3
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FIG. 3. Distributions ofj x ~a!, j y ~b!, andj, the latter one both on a linear~c! and a logarithmic scale~d!, for the ferrite billiard at 6.41

GHz, corresponding to Fig. 1~b!. The dashed lines are the theoretical expectations from Eqs.~3! and~4!, respectively, wheres5A^ j x,y
2 &; see

Eq. ~5!.
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distributions for the ferrite billiard. The dashed lines are c
culated from Eq.~2!. The parametere has not been fitted bu
has been taken directly from the experiment by averagingcR

2

andc I
2 over all pixels at a given frequency.

One observes a quantitative agreement with theory for
case that the leakage current is negligible@Fig. 2~b!#. For the
scarred wave function of Fig. 2~a!, on the other hand, the
experimentally found distribution ofucu2 is completely at
odds with theory. Such discrepancies are not new. Alread
the disseminating paper by McDonald and Kaufman@3#
Gaussian distributions forc were observed for chaotic wav
functions exclusively. It is obvious that the approach usin
random superposition of plane waves cannot work
bouncing ball and scarred wave functions such as the
shown in Fig. 1~a!. It is an easy matter to show that sha
drops in theucu2 distribution as the one in Fig. 2~a! are
generic, e.g., for all wave functions of the rectangle@15#.

Figure 2~c! shows a corresponding example for the op
billiard at a frequency where there is no leakage curre
Again one finds a complete correspondence with theory.

IV. CURRENT DISTRIBUTIONS

For the currents shown in the bottom panel of Fig. 1
distribution function of

jW5Im@c* ¹W c#5cR¹W c I2c I¹W cR
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has to be calculated. A similar problem occurred in our wo
on global and local level dynamics where the distributi
function ofc¹W c was needed@4#. With the approach using a
random superposition of plane waves the calculation of
averages is straightforward and yields@12#

P~ j x,y!5
1

A2^ j x,y
2 &

expS 2A 2

^ j x,y
2 &

u j x,yu D ~3!

for the distribution of the current componentsj x and j y , and

P~ j !5
4 j

^ j 2&
K0S 2 j

A^ j 2&
D ~4!

for the distribution of the mod(j )5Aj x
21 j y

2, where the pa-
rameter

^ j x,y
2 &5

1

2
^ j 2&5k2^cR

2&^c I
2& ~5!

can again be taken directly from the experiment.
Figures 3 and 4 show the distributions forj x , j y , andj for

the same patterns depicted in Figs. 1~b! and 1~c!, respec-
tively. Once again, theory is in complete accordance with
experiment if there are no leakage currents, but is not abl
describe the experiment otherwise. For comparison, Fig
shows the current distribution for the scarred wave funct
8-4
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FIG. 4. Same as Fig. 3, but for the open billiard at 5.77 GHz, corresponding to Fig. 1~c!.
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in Fig. 1~a!. Not unexpectedly there are again significa
deviations from the universal behavior. The excess at la
current values in particular is a consequence of the str
leakage currents observed at positions of highucu2 values
@see Fig. 1~a!#.

In particular, we observe identical distributions forj x and
j y in the ferrite billiard. This is no longer the case for th
open billiard, where the maximum of thej x distribution is
shifted significantly to negative values caused by the tra
port from the right to the left through the billiard.

V. THE VORTEX SPATIAL AUTOCORRELATION
FUNCTION

A very useful quantity to characterize the vortex structu
of a vector field is the vorticity. Up to a factor of 1/2 it i

FIG. 5. Distribution ofj on a logarithmic scale as in Fig. 3~d!,
but for the scarred wave function at 5.19 GHz, shown in Fig. 1~a!.
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identical to the rotation of the current density,

v5
]cR

]x

]c I

]y
2

]c I

]x

]cR

]y
5

1

2
~¹W 3 jW !z .

The calculation of the corresponding distribution functi
P(v) follows exactly the same lines as for the current d
tribution and yields

P~v!5
1

A2^v2&
expS 2A 2

^v2&
uvu D , ~6!

where

^v2&5
1

2
k4^cR

2&^c I
2& ~7!

can be taken directly from the experiment.
Figure 6 shows the vorticity distribution for the examp

shown in Fig. 1~b! for the ferrite billiard. The dashed line ha
been calculated from Eq.~6!. Again the parameterl was not
fitted but taken from the experiment.

For the wave function to be zero both real and imagin
parts have to be vanished. As a consequence there ar
longer nodal lines, but only nodal points. Each nodal po
corresponds to a vortex in the corresponding flow patte
Since the distance between neighboring node lines is of
order of half of a wavelength both for real and imagina
parts, the mean spacing between neighboring nodal poin
of this order of magnitude as well.
8-5
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Using the approach using a random superposition of pl
waves, Berry and Dennis@16# calculated two types of vortex
spatial autocorrelation functions, one of them called pair c
relation function is defined by

g~r !5g0^d„cR~ r̄ 1r !…d„c I~ r̄ 1r !…d„cR~ r̄ !…d„c I~ r̄ !…

3uv~ r̄ 1r !uuv~ r̄ !u& r̄ . ~8!

The normalizationg0 is determined such thatg(r )→1 for
r→`. The other correlation function discussed by the a
thors, the charge autocorrelation functiongQ(r ), differs from
expression~8! only by the fact that the sign of the vorticity i
taken into account,

gQ~r !5g0^d„cR~ r̄ 1r !…d„c I~ r̄ 1r !…d„cR~ r̄ !…d„c I~ r̄ !…

3v~ r̄ 1r !v~ r̄ !& r̄ .

Since forgQ(r ), pairs of vortices with different senses o
rotation enter with a negative sign, we havegQ(r )→0 for
r→`. For the explicit expressions ofg(r ) andgQ(r ), which
are quite complicated, the reader is referred to the orig
work. From the spatial autocorrelation function the distrib
tion of nearest distances between vortices can be calcula
which has been studied by Saichevet al. @17#.

The experimental study of the vortices is more diffic
than that of the different types of distribution functions d
cussed above, since it involves the determination of the z
of real and imaginary parts of the wave function. Because
the applied grid period of 5 mm, the precision in determini
distances is only moderate, and more problematically, i
impossible to resolve vortices lying very close togeth

FIG. 6. Distribution of the vorticity for the ferrite billiard at 6.41
GHz corresponding to Fig. 1~b!. The dashed line corresponds to E
~6!, wherel5A^v2&; see Eq.~7!.
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which is very often the case for vortices with different sig
In this situation a reliable determination of the distance d
tribution is not possible. The determination of the char
correlation functiongQ , too, did not work because of th
cancellation of positive and negative terms, leading to
intolerable increase of the noise level. But the pair corre
tion functiong could be determined. Since the wave numb
k enters the pair correlation function as a scaling factor o
we may writeg(r )5ĝ(x), wherex5kr. This allows us to
improve the statistics by superimposing the results from
ferent frequencies. Figure 7 shows the resulting pair corr
tion function ĝ(x) obtained from current patterns at 43 di
ferent frequencies in the range from 4 to 8 GHz,
extracting the found vortices by hand. The frequency
gimes showing a flow into the probe antenna were caref
avoided. Though the statistics is only moderate, the osc
tions predicted by theory are clearly observable. The h
observed in the experimental histogram at small distan
reflects the above mentioned difficulty to resolve clos
neighboring vortices.

We can thus conclude that the experimentally obtain
distributions of wave function amplitudes, currents, and v
tices are in quantitative agreement with the predictions of
approach using a random superposition of plane waves, if
wave function is chaotic.
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FIG. 7. Vortex pair correlation functionĝ(x) for the ferrite bil-

liard, see Eq.~8!, wherex5kr and ĝ(x)5g(r ). The solid line has
been calculated from an integral expression given by Berry
Dennis@16#.
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